Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sub-bandgap photoconductivity and photocapacitance in CIGS thin films and devices

Identifieur interne : 002450 ( Main/Repository ); précédent : 002449; suivant : 002451

Sub-bandgap photoconductivity and photocapacitance in CIGS thin films and devices

Auteurs : RBID : Pascal:11-0433366

Descripteurs français

English descriptors

Abstract

Photoconductivity and photocapacitance of Cu(In,Ga)Se2 and CuGaSe2 thin films and devices induced by sub-bandgap illumination are investigated. Both effects have been attributed to the optical transition from valence band to the same empty levels situated around 0.8-0.9 eV above the valence band. The influence of the metastable states created by illumination and voltage bias on the sub-bandgap response has been studied. The experimental results are discussed in the framework of a model based on negative-U property of a native defect in chalcopyrites, i.e. VSe-VCu divacancy. The arguments are presented that the levels involved in the optical transition observed in photoconductivity and photocapacitance might be antibonding levels of the acceptor configuration of this defect.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0433366

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Sub-bandgap photoconductivity and photocapacitance in CIGS thin films and devices</title>
<author>
<name sortKey="Igalson, M" uniqKey="Igalson M">M. Igalson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Faculty of Physics, Warsaw University of Technology, Koszykowa 75</s1>
<s2>PL 00 662 Warszawa</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>PL 00 662 Warszawa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Urbaniak, A" uniqKey="Urbaniak A">A. Urbaniak</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Faculty of Physics, Warsaw University of Technology, Koszykowa 75</s1>
<s2>PL 00 662 Warszawa</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>PL 00 662 Warszawa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Krysztopa, A" uniqKey="Krysztopa A">A. Krysztopa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Faculty of Physics, Warsaw University of Technology, Koszykowa 75</s1>
<s2>PL 00 662 Warszawa</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>PL 00 662 Warszawa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aida, Y" uniqKey="Aida Y">Y. Aida</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Device Development Center, TDK corporation</s1>
<s2>Ichikawa, Chiba, 272-8558</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Ichikawa, Chiba, 272-8558</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratory of Photovoltaic, University of Luxembourg, 41, rue du Brill</s1>
<s2>4422 Belvaux</s2>
<s3>LUX</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
<wicri:noRegion>4422 Belvaux</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Caballero, R" uniqKey="Caballero R">R. Caballero</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Helmholtz Zentrum Berlin für Materialien und Energie, Hahn Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Edoff, M" uniqKey="Edoff M">M. Edoff</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Ångström Solar Center, Uppsala University, P.O. Box 534</s1>
<s2>751 21, Uppsala</s2>
<s3>SWE</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>751 21, Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Siebentritt, S" uniqKey="Siebentritt S">S. Siebentritt</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Device Development Center, TDK corporation</s1>
<s2>Ichikawa, Chiba, 272-8558</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Ichikawa, Chiba, 272-8558</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0433366</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0433366 INIST</idno>
<idno type="RBID">Pascal:11-0433366</idno>
<idno type="wicri:Area/Main/Corpus">002808</idno>
<idno type="wicri:Area/Main/Repository">002450</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bias voltage</term>
<term>Chalcopyrite</term>
<term>Copper</term>
<term>Copper selenides</term>
<term>Defect level</term>
<term>Electronic structure</term>
<term>Energy gap</term>
<term>Experimental result</term>
<term>Gallium</term>
<term>Gallium selenides</term>
<term>Illumination</term>
<term>Indium selenides</term>
<term>Metastable states</term>
<term>Optical transition</term>
<term>Photoconductivity</term>
<term>Thin film devices</term>
<term>Valence bands</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Bande interdite</term>
<term>Photoconductivité</term>
<term>Dispositif couche mince</term>
<term>Eclairement</term>
<term>Transition optique</term>
<term>Bande valence</term>
<term>Structure électronique</term>
<term>Etat métastable</term>
<term>Tension polarisation</term>
<term>Résultat expérimental</term>
<term>Chalcopyrite</term>
<term>Niveau défaut</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Cuivre</term>
<term>Gallium</term>
<term>CuGaSe2</term>
<term>7350P</term>
<term>7320A</term>
<term>7320</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Photoconductivity and photocapacitance of Cu(In,Ga)Se2 and CuGaSe2 thin films and devices induced by sub-bandgap illumination are investigated. Both effects have been attributed to the optical transition from valence band to the same empty levels situated around 0.8-0.9 eV above the valence band. The influence of the metastable states created by illumination and voltage bias on the sub-bandgap response has been studied. The experimental results are discussed in the framework of a model based on negative-U property of a native defect in chalcopyrites, i.e. V
<sub>Se</sub>
-V
<sub>Cu</sub>
divacancy. The arguments are presented that the levels involved in the optical transition observed in photoconductivity and photocapacitance might be antibonding levels of the acceptor configuration of this defect.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>519</s2>
</fA05>
<fA06>
<s2>21</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Sub-bandgap photoconductivity and photocapacitance in CIGS thin films and devices</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of the EMRS 2010 Spring Meeting Symposium M: Thin Film Chalcogenide Photovoltaic Materials Strasbourg, France</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>IGALSON (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>URBANIAK (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KRYSZTOPA (A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>AIDA (Y.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CABALLERO (R.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>EDOFF (M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>SIEBENTRITT (S.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ROMEO (Alessandro)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SCHEER (Roland)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>GUILLEMOLES (Jean François)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>YAMADA (Akira)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>ABOU-RAS (Daniel)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Faculty of Physics, Warsaw University of Technology, Koszykowa 75</s1>
<s2>PL 00 662 Warszawa</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Device Development Center, TDK corporation</s1>
<s2>Ichikawa, Chiba, 272-8558</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Laboratory of Photovoltaic, University of Luxembourg, 41, rue du Brill</s1>
<s2>4422 Belvaux</s2>
<s3>LUX</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Helmholtz Zentrum Berlin für Materialien und Energie, Hahn Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Ångström Solar Center, Uppsala University, P.O. Box 534</s1>
<s2>751 21, Uppsala</s2>
<s3>SWE</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>the European Materials Research Society (E-MRS</s1>
<s3>EUR</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>7489-7492</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000509101330840</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>10 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0433366</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Photoconductivity and photocapacitance of Cu(In,Ga)Se2 and CuGaSe2 thin films and devices induced by sub-bandgap illumination are investigated. Both effects have been attributed to the optical transition from valence band to the same empty levels situated around 0.8-0.9 eV above the valence band. The influence of the metastable states created by illumination and voltage bias on the sub-bandgap response has been studied. The experimental results are discussed in the framework of a model based on negative-U property of a native defect in chalcopyrites, i.e. V
<sub>Se</sub>
-V
<sub>Cu</sub>
divacancy. The arguments are presented that the levels involved in the optical transition observed in photoconductivity and photocapacitance might be antibonding levels of the acceptor configuration of this defect.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C50P</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C20A</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Photoconductivité</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Photoconductivity</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Dispositif couche mince</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Thin film devices</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Eclairement</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Illumination</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Transition optique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Optical transition</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Transición óptica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Bande valence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Valence bands</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Etat métastable</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Metastable states</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Tension polarisation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Bias voltage</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Voltage polarización</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Résultat expérimental</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Experimental result</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Resultado experimental</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Chalcopyrite</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Chalcopyrite</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Niveau défaut</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Defect level</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>CuGaSe2</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>7350P</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>7320A</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>7320</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>297</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>EMRS Spring Meeting Symposium M: Thin Film Chalcogenide Photovoltaic Materials</s1>
<s2>10</s2>
<s3>Strasbourg FRA</s3>
<s4>2010-06-07</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002450 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002450 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0433366
   |texte=   Sub-bandgap photoconductivity and photocapacitance in CIGS thin films and devices
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024